Par-4 is an essential downstream target of DAP-like kinase (Dlk) in Dlk/Par-4-mediated apoptosis.

نویسندگان

  • Meike Boosen
  • Susanne Vetterkind
  • Jan Kubicek
  • Karl-Heinz Scheidtmann
  • Susanne Illenberger
  • Ute Preuss
چکیده

Prostate apoptosis response-4 (Par-4) was initially identified as a gene product up-regulated in prostate cancer cells undergoing apoptosis. In rat fibroblasts, coexpression of Par-4 and its interaction partner DAP-like kinase (Dlk, which is also known as zipper-interacting protein kinase [ZIPK]) induces relocation of the kinase from the nucleus to the actin filament system, followed by extensive myosin light chain (MLC) phosphorylation and induction of apoptosis. Our analyses show that the synergistic proapoptotic effect of Dlk/Par-4 complexes is abrogated when either Dlk/Par-4 interaction or Dlk kinase activity is impaired. In vitro phosphorylation assays employing Dlk and Par-4 phosphorylation mutants carrying alanine substitutions for residues S154, T155, S220, or S249, respectively, identified T155 as the major Par-4 phosphorylation site of Dlk. Coexpression experiments in REF52.2 cells revealed that phosphorylation of Par-4 at T155 by Dlk was essential for apoptosis induction in vivo. In the presence of the Par-4 T155A mutant Dlk was partially recruited to actin filaments but resided mainly in the nucleus. Consequently, apoptosis was not induced in Dlk/Par-4 T155A-expressing cells. In vivo phosphorylation of Par-4 at T155 was demonstrated with a phospho-specific Par-4 antibody. Our results demonstrate that Dlk-mediated phosphorylation of Par-4 at T155 is a crucial event in Dlk/Par-4-induced apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Par-4 is an essential downstream target of Dlk in Dlk/Par-4-mediated apoptosis

*Institute of Genetics, University of Bonn, D-53117 Bonn, Germany ‡present address: Institute of Pharmacology and Toxicology, University Hospital of Johann Wolfgang Goethe-University of Frankfurt am Main, D-60590 Frankfurt am Main, Germany §present address: Institute of Health Sciences, Sargent College, Boston University, Boston, MA 02215, USA ||Institute of Structural Biology (IBI-2), Research...

متن کامل

DAP-like kinase interacts with the rat homolog of Schizosaccharomyces pombe CDC5 protein, a factor involved in pre-mRNA splicing and required for G2/M phase transition.

DAP-like kinase (Dlk, also termed ZIP kinase) is a leucine zipper-containing serine/threonine-specific protein kinase with as yet unknown biological function(s). Interaction partners so far identified are either transcription factors or proteins that can support or counteract apoptosis. Thus, Dlk might be involved in regulating transcription or, more generally, survival or apoptosis. Here we re...

متن کامل

DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity

The c-Jun N-terminal kinase (JNK) signaling pathway is essential for neuronal degeneration in multiple contexts but also regulates neuronal homeostasis. It remains unclear how neurons are able to dissociate proapoptotic JNK signaling from physiological JNK activity. In this paper, we show that the mixed lineage kinase dual leucine zipper kinase (DLK) selectively regulates the JNK-based stress r...

متن کامل

JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis

Neurons are highly polarized cells that often project axons a considerable distance. To respond to axonal damage, neurons must transmit a retrograde signal to the nucleus to enable a transcriptional stress response. Here we describe a mechanism by which this signal is propagated through injury-induced stabilization of dual leucine zipper-bearing kinase (DLK/MAP3K12). After neuronal insult, spec...

متن کامل

The DLK gene is a transcriptional target of PPARγ.

DLK (dual leucine zipper-bearing kinase) is a key regulator of development, cell differentiation and apoptosis. Interestingly, recent studies have shown that DLK expression is up-regulated in 3T3-L1 cells induced to differentiate into adipocytes and that DLK knockdown impairs the expression of PPARγ (peroxisome-proliferator-activated receptor γ), a master regulator of adipogenesis. Because the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 20 18  شماره 

صفحات  -

تاریخ انتشار 2009